ЭЛЕКТРОМЕХАНИЧЕСКИЕ РЕЛЕ ВРЕМЕНИ - Электромеханические реле времени <!--%IFTH1%0%-->- Электрические аппараты<!--%IFEN1%0%--> - Каталог файлов - Сайт обо всем на свете.

Суббота, 10.12.2016, 18:36
| RSS

      
Главная » Файлы » Электрические аппараты » Электромеханические реле времени

ЭЛЕКТРОМЕХАНИЧЕСКИЕ РЕЛЕ ВРЕМЕНИ
[ ] 23.04.2010, 17:37
ЭЛЕКТРОМЕХАНИЧЕСКИЕ РЕЛЕ ВРЕМЕНИ


В схемах защиты и автоматики часто требуется выдержка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в определенной временной последовательности операций. Для создания выдержки времени служат электрические аппараты, называемые реле времени.
Общими требованиями для реле времени являются:
а) стабильность выдержки времени при колебаниях напряжения, частоты питания, температуры окружающей среды и воздействии других факторов;
б) малые потребляемая мощность, масса и габариты. Возврат реле в исходное положение происходит, как правило, при его обесточивании. Поэтому коэффициент возврата может быть очень низким.
В зависимости от назначения к реле времени предъявляются различные специфические требования. Для схем автоматического управления электроприводом при большой частоте включений требуются реле с высокой механической износостойкостью — до (5-г-10) - 10е срабатываний. Требуемые выдержки времени находятся в пределах 0,25—10 с. К этим реле не предъявляются требования относительно высокой стабильности выдержки времени. Разброс времени срабатывания может достигать 10 %. Реле должны работать в производственных условиях при наличии интенсивных механических воздействий.
Реле для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Износостойкость реле времени защиты порядка (5ч-10) • 103 срабатываний. Выдержки времени таких реле составляют 0,1—20 с.
Для автоматизации технологических процессов необходимы реле с большой выдержкой времени — от нескольких минут до нескольких часов. В этом случае, как правило, используются моторные реле времени. В настоящее время созданы также полупроводниковые реле с таким же большим диапазоном выдержки времени (см. § 12.4).

10.2. РЕЛЕ ВРЕМЕНИ С ЭЛЕКТРОМАГНИТНЫМ ЗАМЕДЛЕНИЕМ

а) Устройство реле и влияние различных факторов на его работу. Принцип электромагнитного замедления рассмотрен в § 5.7. Конструкция реле с таким замедлением типа РЭВ-800 (рис. 10.1) содержит П-образный магнитопровод / и якорь 2 с немагнитной прокладкой 3. Магнитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5, на котором устанавливается контактная система 6.
На магнитопроводе установлена намагничивающая обмотка 7 и короткозамкнутая обмотка в виде овальной гильзы 8. Усилие возвратной пружины 9 изменяется с помощью регулировочной гайки 10, которая фиксируется шплинтом.
Для получения большой выдержки времени при отпускании необходима высокая магнитная проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы (см. § 5.7). С этой целью все соприкасающиеся детали магнитопровода и якоря тщательно шлифуются. Литой алюминиевый цоколь создает дополнительный короткозамкнутый виток, увеличивающий выдержку времени.
У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Ф0сг, который определяется свойствами материала магнитопровода, геометрическими размерами магнитной цепи и магнитной проводимостью рабочего зазора (см. § 5.8). Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи и магнитной проводимости рабочего зазора, тем ниже остаточная индукция, а следовательно, и остаточный поток. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле. Применение стали с низким значением Яс позволяет увеличить выдержку времени.


Рис. 10.1. Реле времени с электромагнитным замедлением


Рис. 10.2. Схемы включения реле с выдержкой времени

б) Схемы включения реле. Время срабатывания реле с электромагнитным замедлением очень мало, так как постоянная времени мала из-за большого начального рабочего зазора, и трогание реле происходит при малом значении МДС обмотки. МДС трогания значительно меньше установившегося значения. Это время составляет 0,05— 0,2 с при наличии короткозамкнутого витка и 0,02—0,05 с ври его отсутствии. Таким образом, возможности электромагнитного замедления при срабатывании весьма ограничены. Поэтому используются специальные схемы включения электромагнитных реле (рис. 10.2). Если необходима большая выдержка времени при замыкании контактов, то целесообразна схема с промежуточным реле К (рис. 10.2, а). Обмотка реле времени КТ все время подключена к напряжению через размыкающий контакт реле К. При подаче напряжения на обмотку К последнее размыкает свой контакт и обесточивает реле КТ. Якорь КТ отпадает, и его размыкающие контакты срабатывают с необходимой выдержкой времени, обусловленной временем срабатывания реле К и временем отпускания реле КТ. В схеме рис. 10.2, б роль короткозамкнутого витка играет сама намагничивающая обмотка, которая питается через резистор Рдоб. Напряжение, приложенное к обмотке, должно быть достаточным для насыщения магнитной цепи при притянутом якоре. При замыкании управляющего контакта S обмотка реле закорачивается и обеспечивается медленный спад потока в магнитной цепи. Отсутствие специальной короткозамкнутой обмотки позволяет все окно магнитопровода занять намагничивающей обмоткой и создать большой запас по МДС. При этом выдержка времени неизменна при снижении питающего напряжения на обмотке до 0,5(7ноМ. Такая схема широко применяется в электроприводе. Обмотка реле включается параллельно ступени пускового реостата в цепи якоря. При закорачивании этой ступени обмотка реле замыкается, а его контакты с выдержкой времени включают контактор, шунтирующий следующую ступень пускового реостата (рис. 7.18).
Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка (рис. 10.2, е). При включении обмотки ток через вентиль практически равен нулю. При отключении управляющего контакта S поток в магнитной цепи спадает и в обмотке наводится ЭДС с полярностью, указанной на рис. 10.2, е. При этом через вентиль протекает ток, определяемый этой ЭДС, активным сопротивлением обмотки и вентиля и индуктивностью обмотки.
Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление короткозамкнутой цепи), оно должно быть на один-два порядка ниже сопротивления обмотки.
При любых схемах обмотки реле питаются от источника либо постоянного, либо переменного тока с мостовой схемой выпрямления.
в) Регулирование выдержки времени. Время срабатывания реле можно плавно регулировать с помощью возвратной пружины 9 (рис. 10.1). С увеличением сжатия этой пружины увеличивается электромагнитное усилие, необходимое для трогания якоря и определяемое потоком в магнитной цепи. При большем сжатии пружины поток трогания возрастает. Следовательно, возрастает время трогания.
При разомкнутой магнитной цепи постоянная времени обмотки мала и максимальная выдержка времени также незначительна (около 0,2 с). Выдержка времени значительно увеличивается, если поток трогания близок к установившемуся значению. Однако в этом случае реле работает на пологой части кривой Ф(0, что вызывает большие разбросы времени срабатывания.
Для получения выдержки времени 1 с и более, необходимо использовать отпускание якоря. Регулировка выдержки реле при отпускании может производиться плавно и ступенчато (грубо).
Плавное регулирование выдержки времени производится изменением усилия пружины 11 (рис. 10.1). Эта пружина верхним концом упирается в шайбу 14, которая удерживается шпилькой 15, ввернутой в якорь реле. Нижний конец пружины посредством специальной пластины 16 передает силу через два латунных штифта 12, которые могут свободно перемещаться в отверстиях якоря. Оси латунных штифтов 12 смещены относительно оси пружины. В притянутом положении якоря 2 штифты 12 перемещаются вверх и пружина 11 дополнительно сжимается. Пружина 11 создает основную силу, отрывающую якорь от сердечника. •Начальное сжатие пружины изменяется с помощью гайки 13. С увеличением силы пружины 11 электромагнитное усилие, при котором происходит отрыв якоря, увеличивается и возрастает поток отпускания ФОТп- При этом время отпускания уменьшается (рис. 10.3). Чем меньше сила пружины, тем больше выдержка времени. Следует отметить, что при ФОТп, близком к Ф0ст, якорь реле вообще может не отпадать от сердечника.
Возвратная пружина 9 регулируется так, чтобы обеспечить необходимое нажатие размыкающих контактов реле и четкий возврат якоря в положение, показанное на рис. 10 1 (после того как якорь оторвется от сердечника).
Грубое регулирование выдержки времени осуществляется изменением толщины немагнитной прокладки б. Поскольку при притянутом якоре магнитная цепь насыщена, толщина немагнитной прокладки мало сказывается на установившемся потоке. С уменьшением толщины немагнитной прокладки (6o<6i) растет индуктивность катушки при ненасыщенном магнитопроводе и уменьшается скорость спадания магнитного потока. В результате при неизменном усилии пружины 11 (рис. 10.1) выдержка времени увеличивается (рис. 10.4).



Рис. 10.3. Регулирование времени отпускания с помощью пружины  
Рис. 10.4. Регулирование времени отпускания изменением немагнитного зазора

Толщину немагнитной прокладки не рекомендуется брать менее 0,1 мм. В противном случае при повторно-кратковременном режиме работы якорь расклепывает немагнитную прокладку и толщина ее уменьшается, что ведет к изменению выдержки времени. При толщине прокладки 6^0,1 мм этим явлением можно пренебречь.
Следует отметить, что электромеханические реле времени достаточно просты по конструкции и обладают большой ударо-, вибро- и износостойкостью. Допустимое число включений достигает 600 в час. Они могут использоваться в схемах автоматики и электропривода как реле тока, напряжения и промежуточные. Коэффициент возврата их низок и составляет 0,1—0,3. Короткозамкнутые витки создают электромагнитное замедление как при притяжении, так и при отпускании якоря. Поэтому токовые реле с короткозамкнутым витком не реагируют на кратковременные перегрузки. При кратковременных перегрузках МДС обмотки пропорциональна этим перегрузкам.
Поток в магнитопроводе нарастает с постоянной времени Тк, определяемой параметрами короткозамкнутого витка LJRK. Если перегрузка кратковременна и ее длительность гпер<Гср, то поток к моменту tnep не достигнет значения потока срабатывания и якорь останется неподвижным. Если Гпер>Гср, то реле сработает. Таким образом, предотвращается отключение нагрузки (двигателя) при больших, но кратковременных токовых перегрузках, не опасных для двигателя.
Промышленностью выпускаются многочисленные модификации реле с электромагнитным замедлением и выдержкой времени при отпускании 0,3—5 с. Современные реле имеют один или два унифицированных контактных узла. Каждый узел имеет один замыкающий и один размыкающий контакты с общей точкой. Постоянный ток включения контактов составляет 10 А при напряжении 110 В и 5 А при 220 В. Ток отключения для индуктивной нагрузки (катушки реле, контакторов) составляет 0,2, для активной 0,5 А.

Категория: Электромеханические реле времени | Добавил: jurijnet
Просмотров: 6576 | Загрузок: 0
Всего комментариев: 0

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
.....Сообщения.....
  • Меню сайта
    Пользователи
    посетившие сайт сегодня
    .........Наша кнопка.........
  • Сайт обо всем на свете
  • Новости АГЦ
    Меню закачек
    Ваш IP адрес
    54.163.147.69
    Категории раздела
    Электрические аппараты [1]
    Контроллеры [1]
    Командоаппараты [1]
    Резисторы пусковых и пускорегулирующих реостатов [1]
    Реостаты [1]
    Контакторы и магнитные пускатели [1]
    Контакторы постоянного тока [1]
    Контакторы переменного тока [1]
    Магнитные пускатели [1]
    Тиристорный пускатель [1]
    Выбор контакторов и пускателей [0]
    Электромагнитные и тепловые реле [1]
    Электромагнитные реле тока и напряжения [1]
    Конструкция электромагнитных реле тока и напряжения [1]
    Поляризованные реле [1]
    Тепловые реле [1]
    Позисторная защита двигателей [1]
    Электромеханические реле времени [1]
    Реле времени с механическим замедлением [1]
    Герконовые реле [1]
    Основные соотношения параметров герконового реле [1]
    Конструкция герконовых реле [1]
    Управление герконом с помощью постоянного магнита [1]
    Герконовые реле с памятью [1]
    Герконы с большой коммутационной способностью [1]
    Преимущества и недостатки герконов [1]
    Применение оптоэлектронных приборов [1]
    Электромагнитные муфты управления [1]
    Электромагнитные фрикционные муфты [1]
    Электромагнитные ферропорошковые муфты [1]
    Гистерезисные муфты [1]
    Рубильники и переключатели [1]
    Конструкция рубильников и переключателей [1]
    Предохранители [1]
    Нагрев плавкой вставки при коротком замыкании [1]
    Конструкция предохранителей низкого напряжения [1]
    Выбор предохранителей [1]
    Высоковольтные предохранители [1]
    Автоматы [1]
    Токоведущая пепь и дугогасительная система автоматов [1]
    Приводы и механизмы универсальных автоматов [1]
    Расцепители автоматов [1]
    Универсальные и установочные автоматы [1]
    Быстродействующие автоматы [1]
    Автоматы для гашения магнитного поля мощных генераторов [1]
    Конструкция реакторов [1]
    Сдвоенные реакторы [1]
    Трансформаторы тока [1]
    Конструкция трансформаторов тока [1]
    Выбор трансформаторов тока [1]
    Трансформаторы напряжения [1]
    Конструкция трансформаторов напряжения [1]
    Емкостные делители напряжения [1]
    Поиск
    Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Статистика.
    Рейтинг сайтов Луганска и Луганской области
    Статистика
    Мини-чат
    200
    © ElektriKsAglofabriki 2009-2013.